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Abstract

Most genomic and evolutionary comparative analyses rely on accurate multiple sequence alignments. With
their underlying codon structure, protein-coding nucleotide sequences pose a specific challenge for
multiple sequence alignment. Multiple Alignment of Coding Sequences (MACSE) is a multiple sequence
alignment program that provided the first automatic solution for aligning protein-coding gene datasets
containing both functional and nonfunctional sequences (pseudogenes). Through its unique features,
reliable codon alignments can be built in the presence of frameshifts and stop codons suitable for
subsequent analysis of selection based on the ratio of nonsynonymous to synonymous substitutions.
Here we offer a practical overview and guidelines on the use of MACSE v2. This major update of the
initial algorithm now comes with a graphical interface providing user-friendly access to different subpro-
grams to handle multiple alignments of protein-coding sequences. We also present new pipelines based on
MACSE v2 subprograms to handle large datasets and distributed as Singularity containers. MACSE and
associated pipelines are available at: https: //bioweb.supagro.inra.fr/macse/.

Key words Multiple sequence alignment, Molecular evolution, Phylogenomics, Pseudogenes, Meta-
barcoding, Bioinformatics pipelines

1 Introduction

Multiple sequence alignment (MSA) is a crucial step in many
evolutionary analyses. Nonetheless, the most commonly used
alignment tools overlook the underlying codon structure of
protein-coding nucleotide sequences. Accounting for this structure
is useful for improving the proposed alignment, but it is also a
prerequisite for some downstream analyses such as selection pres-
sure analysis based on the nonsynonymous to synonymous substi-
tution ratio (dN/dS).

MACSE [1] was specifically designed to align protein-coding
nucleotide (NT) sequences with respect to their amino acid
(AA) translation while allowing NT sequences to contain multiple
frameshifts and /or stop codons (see Fig. 1). MACSE thus provided
the first automatic solution for aligning protein-coding gene data-
sets containing nonfunctional sequences (psecudogenes) without
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Fig. 1 MACSE alignment of a set of nucleotide sequences containing functional genes as well as pseudogenes
(marked by a white star). The nucleotide alignment (NT) and its amino acid (AA) translation are edited with
SeaView (‘codon-colors’ option for the NT alignment). Frameshifts caused by deletions and insertions are
represented by the ‘I’ character. A white frame highlights Frameshifts and stop codons

disrupting the underlying codon structure. It has also proved useful
in detecting undocumented frameshifts in public database
sequences and in aligning next-generation sequencing reads,/con-
tigs against reference coding sequences [2 ], especially for metabar-
coding analysis [3].

The first MACSE release contained a single program that took
coding nucleotide sequences as input and aligned them with respect
to their codon structures [1]. This early command line version
included multiple options that allowed end-users to fine-tune the
alignment options, but its use could be tedious. In order to stream-
line the program application, we built several companion tools that
exploit the core MACSE algorithm to tackle related problems
[4]. The resulting MACSE v2 toolkit was hence much more pow-
erful as it provided the building blocks to construct powerful
alignment pipelines. However, the number of available subpro-
grams and options featured in this version was problematic for
occasional users. We finally proposed a Graphical User Interface
(GUI) to improve the end-user experience. This GUI is useful for
new users who can test MACSE on a few datasets without first
having to deal with the command line option complexity. More-
over, the GUI displays the command line corresponding to selected
options, thus streamlining the transition from the GUI to the
command line version.

When aligning protein-coding nucleotide sequences, it is often
necessary to chain several steps such as sequence prefiltering (e.g.,
to remove unwanted UTR fragments) and then producing and
filtering the nucleotide alignment based on its amino acid transla-
tion. We have successfully used MACSE to design eftective pipe-
lines for various tasks, such as aligning thousands of orthologous
sequence datasets from the OrthoMaM database [5] or correcting
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tens of thousands of barcoding reads [6]. In this chapter, we
introduce the specificity and key functionalities of MACSE v2. We
outline some standard use cases to illustrate how MACSE subpro-
grams can be chained to produce high-quality protein-coding
sequence alignments in various contexts. All examples mentioned
in this chapter can be downloaded from the MACSE website
https: //bioweb.supagro.inra.fr/macse /. The two main pipelines
discussed here are also available as Singularity containers [7] for
easy installation and use on high-performance computing clusters.

2 MACSE Basic Usage and Possible Troubleshooting

2.1 Getting Started

MACSE is written in JAVA and hence runs in a straightforward way
on any computer that has a Java Runtime Environment (JRE)
release installed. If needed, JRE is available for free download on
the Java website (www.java.com). The most recent MACSE release
is then available for download on the MACSE website (https://
bioweb.supagro.inra.fr/macse). This website also contains detailed
documentation with several examples for each subprogram, as well
as detailed explanations of possible applications. Each MACSE
release is a single jar file. The latest 2019 release is macse_v2.03.
jar. It can be launched by typing the following command:

Java ~jar macse_v2.03. jar
= Launches the GUI version of MACSE (see Fig.2).

MACSE may also be launched by double clicking on the mac-
se_v2.03 jar file. In both cases this will launch the graphic user
interface of MACSE. Anything typed after macse_v2.03.jar will
be considered as options passed to MACSE, whereas anything
typed before will be considered as Java virtual machine options.
The command line version and GUI versions of MACSE may be
run via the same MACSE jar file. In the absence of any option, the
GUI version is launched, whereas the command line version is
launched as soon as at least one option is submitted to MACSE.
As MACSE is a set of subprograms, the “-prog” option allows users
to specify the subprogram to be executed. This is a mandatory
option, but if the user does not know the subprogram names, any
name may be submitted, and a help message with a list of possible
subprograms will be displayed:

Java ~jar macse_v2.03.jar -prog wrongProgram

= Launches the command line version of MACSE, and print a help
message listing all valid subprograms with a one-line descrip-
tion of each of them.

Once the name of the subprogram of interest has been selected,
e.g., alignSequences, a brief help message for this subprogram can
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Fig. 2 Presentation of the MACSE Graphical User Interface showing the different parts of the main window: the
“program” menu allowing users to choose the subprograms accompanied by a table listing all of them (with their
mandatory options and the required files) and the location where each element can be found (where a brief
description of the selected subprogram or option can be found, the different menus, the command line, etc.)

be displayed by invoking it without further options, and a descrip-
tion of what this subprogram is useful for and a list of mandatory
options will be printed:

Java -jar macse_v2.03.gar -prog alignSequences
= Prints a basic help message of the alignSequences subprogram

focusing on its mandatory options.

The “-help” option provides more detailed information and
the complete list of options:

Java -jar macse_v2.03.jar -prog alignSequences -belp

= Prints a detailed help message of the alignSequences subprogram
presenting all available options.

Documentation may also be accessed when using GUI (see
Fig. 2). Once the subprogram of interest is selected via the “Pro-
grams” menu, a brief description of this subprogram appears at the
top of the GUI. Options are grouped into categories: mandatory
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options, output file names, alignment parameters, etc. Once an
option field is selected by clicking on it, the related documentation
is displayed at the top of the GUI. The command line
corresponding to the graphically selected options appears at the
bottom of the GUI. Copying this command line before running
MACSE via the GUI ensures the traceability of the analysis while
also enabling the user to easily run the same analysis via the com-
mand line without having to manually type the command line.

Hereafter we shorten the command line by omitting the
MACSE release version. Note that this can also be done by renam-
ing the downloaded jar file by using a symbolic link, by defining an
environment variable on the system, or through any other technical
solution that suits the user. For enhanced readability, we also
extend the command to several lines, with one option per line,
and indicate the option name in bold font. It follows that a com-
mand such as:

Java -jar macse_v2.03.jar -prog alignSequences -help
will hence be written in the rest of this chapter as:

Java ~jar macse.jar -prog alignSequences

-help

The most frequent pitfall encountered by new MACSE users arises
when the user provides an input sequence file containing fragments
of nonprotein-coding nucleotide sequences. In case of unexpected
MACSE behavior, the first thing to check is that the input sequence
file contains nucleotide sequences in a valid fasta format. To do so,
users may try to open it with a sequence /alignment viewer such as
SeaView [8] or AliView [9], which are very convenient to visualize
sequences and alignments produced by MACSE. These viewers
accept the ‘I” character in both nucleotide and amino acid
sequences, and it is also possible to visually highlight the codon
structure of the aligned nucleotide sequences.

A second aspect to verity is that the sequences are all in forward
direction. This could be harder to check depending on how the
sequences have been obtained, but MACSE will not be able to
correctly align sequences in reverse orientation. A solution could
be to blast them against public protein databases using blastx. All
sequences for which the best hit occurs with a negative reading
frame should probably be reverse translated. Alternatively, MAFFT
[10] has convenient functionalities (--adjustdirection or --adjust-
directionaccurately) that can reorient nucleotide sequences in a
multiple sequence alignment.

The last point is to ensure that the input sequences do not
contain nonprotein-coding fragments. Typically, nonprotein-
coding fragments in CDS are found when UTRs (or introns) are
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not trimmed out. This often occurs when dealing with de novo
assembled contigs. Contigs should have their nonprotein-coding
parts removed before alignment with MACSE. This could be done
using dedicated annotation tools such as prot4EST [11], UTRme
[12], or other similar tools. Alternatively, the MACSE trimNon-
HomologousFragments subprogram may be used. This subpro-
gram will not focus specifically on noncoding regions, but it will
mask any long fragment that is nonhomologous (at the amino acid
level) to other sequences.

The trimNonHomologousFragments subprogram was initially
developed to filter long insertions that may be caused, for instance,
by annotation errors such as undetected introns or UTRs. Having
to handle long insertions in one or a few sequences could drastically
slow down the alignment process. Alignment of these nonhomolo-
gous regions is mostly useless, as they would probably be removed
by any alignment filtering tools in subsequent analyses.

The trimNonHomologousFragments subprogram mainly aims
at removing long nonhomologous fragments but keeps smaller
ones to limit the risk of removing fragments that are actually
homologous. Several options are provided to adjust the stringency
of this prefiltering step, but we advise against being too strict at this
early stage of the analysis. At this stage, a sequence that has been
trimmed along almost its entire length is likely not at all homolo-
gous to other sequences, so it might be better to remove it
completely. For a sequence to be kept in the output fasta file, the
percentage of this sequence that should remain after homology
prefiltering can be adjusted (-min_homology_to_keep_seq). Full
details of this prefiltering process can be output in a fasta file
(-out_mask_detail) in which the original sequences are written
using a mix of upper case (for preserved nucleotides) and lower
case (for removed nucleotides) letters. In any case, the trimNon-
HomologousFragment subprogram outputs a CSV file summariz-
ing the impact of this prefiltering process on each sequence. This
file contains the number of nucleotides (including, or not, non-
informative “N” nucleotides) that have been removed from the
whole sequence and from its extremities. Note that the name of
this output file can be specified (-out_trim_info option):

Java ~jar macsejar -prog trim NonHomologousFragments
-seq ENSG00000125812_GZF1_raw.fasta
-out_trim_info output_stats.csy
-min_homology_to_keep_seq 0.6

= Prefilters long nonhomologous sequence fragments; if more than
60% of a sequence is filtered then this sequence is entirely
removed.
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The alignSequences subprogram is the core feature of the MACSE
v2 toolkit. Its single mandatory option is a fasta file containing the
coding nucleotide sequences to align. These nucleotide sequences
need to be in forward direction, as alignSequences ignores their
reverse complements, and they should be protein-coding sequences
all along. Indeed, as alignSequences relies on sequence protein
translations to align sequences, if there are any UTR or intron
fragments, alignSequences would waste a lot of time producing
meaningless alignments.

To align CDSs of the Pg3 gene in the Medicago genus [13]
stored in the fasta file named Pg3_Medicago.fasta, the simplest
command line is:

Jjava ~jar macsejar -prog alignSequences
-seq Py3_Medicago.fasta

= Aligns sequences contained in the Pg3_Medicago.fasta file with
default parameters (see Fig. 1).

The alignSequences subprogram, like most other MACSE sub-
programs, generates two fasta files, one containing the aligned
protein-coding nucleotide sequences as codons and another con-
taining the corresponding amino acid alignment. By default, the
names of these files are based on the input file name, but the desired
output file names can be specified using the “-out NT” and
“-out_AA” options.

Since MACSE relies on amino acid translation, it lets you
specify the genetic code adapted to your protein-coding sequences.
The NCBI has assigned a unique number to each genetic code,
which is convenient to easily specify which code should be used. By
default, MACSE uses “the standard code,” but a different default
genetic code may be specified for a dataset using the “-gc_def”
option. For instance, the invertebrate mitochondrial code is the
fifth on the NCBI list. The command line below is hence adapted to
align mitochondrial COX1 sequences of grasshoppers:

Java -jar macse.jar -prog alignSequences
-seq grasshoppers_ COX1.fasta
-ge_def 5
= Aligns invertebrate mitochondrial sequences with the specified
genetic code “5”.

If the dataset contains sequences that use different genetic
codes, they will have to be specified in a separated text file (“-
-gc_file” option) containing, on each line, the name of a sequence
and the number of the corresponding genetic code. Any sequence
absent from this file will be translated using either the genetic code
specified by the -gc_def option or, in the absence of this option, the
standard genetic code. For example, to align metazoan
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mitochondrial COX1 sequences from different phyla [14], the
following command may be used to specify the five different
genetic codes with the -gc_file option:
Jjava ~jar macsejar -progalignSequences

-seq Singh2009_cox1 fasta

-ge_file Singh2009_cox1_gc_file.txt

-out_NT Singh2009_cox1_NT.fasta

-out_AA Singh2009_coxl_AA.fasta
= Aligns metazoan mitochondrial sequences with their

corresponding genetic codes (see Fig. 3).

The translateNT2AA subprogram could also be used to simply
translate protein-coding sequences using either the default stan-
dard genetic code if not specified or the genetic code specified using
the -gc_def and -gc_file options:

Java ~jar macse.jar -prog transinte NT2AA
-seq Singh2009_cox1. fasta

-gc_file Singh2009_cox1_gc_file.txt
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Fig. 3 MACSE alignment of 54 metazoan mitochondrial COX1 sequences from Singh et al. [14] using five
different mitochondrial genetic codes corresponding to the different taxonomic groups. The nucleotide alignment
(NT) and its amino acid (AA) translation are edited with SeaView (‘codon-colors’ option for the NT alignment)
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= Translates metazoan mitochondrial sequences with their
corresponding genetic codes.

The key options described so far are present in most MACSE
subprograms.

Another set of options concerns the costs used to compare
alternative alignments and select the best one. Like most alignment
software, MACSE lets users tune the ratio between gap extension
cost and gap opening cost. Increasing the gap opening cost
(or decreasing the gap extension cost) will tend to favor alignments
where gaps are grouped in long stretches. MACSE also allows
adjustment of the relative cost of gaps appearing at the sequence
extremities (terminal gaps) as opposed to those appearing inside the
sequences (internal gaps). By default, external gaps are less pena-
lized as they often reflect the fact that a sequence was partially
sequenced rather than that a nucleotide insertion/deletion has
occurred. Similarly, one or two missing nucleotides at the sequence
extremities lead to incomplete codons (hence technically frame-
shifts), but such external frameshifts should not be as penalized as
those occurring in the middle of a sequence (internal frameshifts).
When a dataset contains a mix of genes and pseudogenes or of high-
quality sequences (e.g., a CDS from the Swiss-Prot database) and
low-quality sequences (e.g., de novo assembled contigs), it is also
relevant to assign different penalties for the frameshifts and stop
codons appearing in such different types of sequence. To deal with
such cases, MACSE allows users to define two sets of sequences by
providing two fasta files as input instead of a single one. The most
reliable sequences are in the file provided by the “-seq” options,
whereas the least reliable ones are in the file provided by the
“-seq_Ir” option. As it allows stop codons and frameshifts and
allows users to assign them different penalty costs based on the
sequence in which they appear and on their position within this
sequence, MACSE features many more cost-related options than
usual alignment software. These different cost options are summar-
ized in Tables 1 and 2.

As frameshifts and stop codons are much less unexpected in
pseudogenes than in nucleotide sequences coding for a functional
protein, users may opt to decrease the cost of such events. For
instance, the following parameters and options may be used to

MACSE options to adjust stop codon and frameshift costs in sequences

Internal Terminal

Frameshift Stop Frameshift Stop
Reliable sequences -fs -stop -fs_term ==
Less reliable sequences -fs_Ir -stop_lr -fs_Ir_term --
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Table 2
MACSE options to adjust gap costs

Internal gap Terminal gap
Sequence\event Opening Extension Opening Extension
Any sequences -gap_op -gap_ext -gap_op_term gap_ext_term
Corresponding AA
Species Coding NT alignment alignment

-out_NT -out_AA

Functional genes

-seq

}'“HHHHHHHHJ
EEREERERRERRERREER]

FEEEEET TR

Pseudogenes

-seq_Ir

frameshift Stop
caused by a codons
deletion

Fig. 4 MACSE alignment of 48 mammalian CHIA4 nucleotide sequences from Emerling et al. [15] containing
18 functional genes and 30 pseudogenes (_pseudo). The nucleotide alignment and its AA translation are
edited with SEAVIEW (“codon-colors” option for the NT alignment). Frameshifts caused by deletions are
represented by the “!” character. A white frame highlights Frameshifts and stop codons

align both functional and pseudogenized sequences from the mam-
malian CHIA4 gene [15]:
Jjava ~jar macsejar -prog alignSequences
-seq Emerling2018_CHIA4_functional.fasta
-seq_lv Emerling2018_CHIA4_pseudo.fasta
-fs Ir 10
~stop_lr 10
-out_NT Emerling2018_CHIA4 NT.fasta
-out_AA Emerling2018_CHIA4 AA fasta
= Aligns a mix of functional CDS and pseudogenes (see Fig. 4).
The default parameters work fine for most cases, but in the
MACSE online documentation, we provide some guidelines to
help adjust parameter costs for some specific types of sequence

datasets. Note that the default values for each parameter appear in
the GUL
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3 MACSE-Based Pipelines Suitable for Datasets of Various Sizes

3.1 Pipelines Based
on MACSE

as Singularity
Containers

3.2 Basic Pipelines
and Batch Facilities

We designed MACSE V2 as a toolkit dedicated to multiple align-
ments of protein-coding sequences that can be leveraged via both
the command line and a Graphical User Interface (GUI). We used
this toolkit to develop some convenient pipelines as described in
this chapter. We share these pipelines as Singularity containers [7]
since they also depend on a few other tools and some environment
setups. A Singularity container contains everything needed to exe-
cute a specific task. The developer building the container has to
handle dependencies and the environment configuration so that
end-users will not need to worry about this. To run a Singularity
container named “container.sif,” that is, in your current directory,
just type the following command in your Linux terminal:

singularity run ./container.sif

Using the command line version of MACSE, it is quite easy for
bioinformaticians to build an analysis pipeline chaining multiple
MACSE subprograms to conduct tailored-made analyses on several
input datasets. Scripting language or, even better, workflow man-
agers are tools of choice for such tasks, but not everyone masters
such tools. The “multiPrograms” subprogram of MACSE allows
basic scripting for nonbioinformaticians. Its main option
(-MACSE_command_file) allows specifying the file containing a
list of MACSE commands that will be run sequentially. Each line
of this command file must contain a single MACSE command
starting by “-prog” (i.e., omitting “java -jar macse.jar”). The “@”
character can be used before each file path to point towards the
directory containing the command file itself (useful if the command
file is not in the current directory). To prepare this command file,
the end-user can apply the GUI on a single example to generate the
required command line, copy this command line (using copy,/paste
or the “copy to clipboard” button) multiple times into a text file,
and then replace the initial dataset name by a different one on each
line. The basic usage of this subprogram is:

Java -jar macsejar -prog multi Programs

-MACSE_command,_file align_multi.macse

= Launches all MACSE commands stored in the align_multi.macse
file; for instance, to align sequences from three loci this file
contains three lines:

-prog alignSequences -seq LOC_19470.fasta
-prog alignSequences -seq LOC_48720.fasta
-prog alignSequences -seq LOC_72220.fasta
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3.3 Aligning Dozens
of Sequences

When dealing with amino acid translation of nucleotide coding
sequences, it is necessary to handle a larger alphabet (20 amino
acids versus only 4 possible nucleotides), but then the sequences are
three times shorter. However, because MACSE aligns protein-
coding nucleotide sequences while accounting for their amino
acid translations in the three possible reading frames, it needs to
cope with longer nucleotide sequences and a larger amino acid
alphabet. Moreover, most algorithmic optimizations of amino
acid sequence alignment rely on the fact that their amino acid
sequences are invariable, and gaps can be inserted only between
amino acids. This means that amino acids never change throughout
the alignment process. This is not the case with MACSE because
frameshifts can potentially be introduced anywhere in a sequence,
at any step of the alignment process. Amino acids of a given
nucleotide sequence could therefore vary during the alignment
process depending on the reading frames used at a given stage to
translate the sequence. Optimizations generally used in alignment
software are thus harder to incorporate into MACSE because the
amino acid sequences may vary along the alignment process and
different reading frames can be used to translate a single sequence.
This specificity is a powerful feature of MACSE, but it increases the
memory requirements and computation times. Thus, for datasets
containing numerous long sequences, using the core alignSe-
quences subprogram of MACSE with default options may not be
feasible. In such cases, the alignSequences subprogram could be
run to obtain a draft alignment that will hopefully unravel most
frameshifts. Different strategies are presented in the following sec-
tion to get the most of MACSE when dealing with datasets of
various sizes.

MACSE is run through the Java virtual machine, so for rela-
tively large datasets the memory that Java is allowed to use will have
to be increased via the “-Xmx” option. This is not a MACSE option
per se, but it is definitely essential:

Java -jar —Xmx 600m macsejor -prog alignSequences

=Aligns larger datasets by allocating more memory to Java using
the Xmx option.

If the dataset is not too large, MACSE can be used to perform the
whole alignment itself. We advise using this strategy, when possible,
to get the most accurate frameshift placements. The command line
for such an analysis could be as simple as launching MACSE with
default options and allocating some extra memory for the Java
virtual machine:
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Java ~jar —Xmx 600m macsejor -prog alignSequences
-seq Pg3_Medicago.fasta
= The most simple MACSE use case.

However, in most cases, it could be worth prefiltering possible
UTRs or other long nonhomologous fragments contained in the
sequences using the trimNonHomologousFragment MACSE sub-
program. Some analyses, e.g., dN/dS estimation, are highly sensi-
tive to alignment errors, which are favored by the presence of even
short nonhomologous fragments. For such analyses, we strongly
advise [16] also using HMMCleaner [17] to post-filter less reliable
parts of your amino acid alignment and report this masking /filter-
ing at the nucleotide level. The filtered alignment obtained with
HMMCleaner may contain some isolated codons, surrounded only
by gaps or masked codons, as well as sequences with very few
remaining codons. It would make sense to remove such sequences
and filter isolated codons. The reportMaskAA2NT subprogram of
MACSE may be used to report the filtering performed by
HMMCleaner at the nucleotide level and to perform some post-
processing filtering of such isolated codons and patchy sequences.
By using MACSE subprograms for these various filtering steps, the
traceability of the filtering process is achieved by keeping track of
every single nucleotide that has been masked. Finally, it could be
convenient to be able to observe frameshifts and stop codons in the
final alignment, but their presence might be problematic for down-
stream analyses. The alignments obtained with MACSE may be
post-processed to replace stop codon and frameshift symbols by
more standard ones using the exportAlignment subprogram of
MACSE. Producing a reliable alignment of a dataset may hence
require chaining several steps using HMMCleaner together with
multiple MACSE subprograms. We provide a pipeline to automa-
tize this process, while letting end-users turn on or oft the various
filtering steps. The script, written in Bash, is encapsulated in a
Singularity container.

We called this pipeline MACSE_ALFIX (see Fig. 5), since it is
mostly based on MACSE and chains the ALigning, Filtering, and
eXporting steps. The script produces several output files that are
stored in a single directory and named using a common prefix. The
three mandatory options of this script are therefore the input file
name, the output directory name, and the prefix of the output file
names.

singularity run ./MACSE_ALFIX_v0l1.sif
--in_seq_file LOC_48720.fasta
-—out_dir RES LOC_48720
--out_file prefix LOC_48720
= The most simple use case of the MACSE_ALFIX pipeline.
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Fig. 5 Schematic representation of the MACSE_ALFIX pipeline. Boxes represent input/output sequence data
(blue when unaligned and green when aligned) and are accompanied (on the left) by a small illustrative
diagram. On the arrows it is mentioned which subprogram/tool is used and whether this step is optional or not
(on/off button). On the right side, additional output files generated are represented in order to provide users
with a full traceability picture. The central part of the pipeline, with a colored background, corresponds to the
alignment and filtering of the homologous sequences that could be a bottleneck for large datasets
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The computing and memory resources required by MACSE
depend on the number and length of the sequences to align. The
longest sequence plays a key role in the memory and computation
time required by MACSE. When dealing with some long
sequences, it may be necessary to significantly increase the memory
allocated to the Java virtual machine (using the “-Xmx option”),
but the computation time with the default options of the alignSe-
quences subprogram may still be prohibitive. The v2 release of
MACSE introduced several options that help balance the computa-
tion time and alignment accuracy by limiting the number of align-
ment refinement steps (“-max_refine_iter”) or by gradually
narrowing the alignment refinement steps to more local improve-
ments (“-local_realign_init” and “-local_realign_dec” options). As
an illustrative example, to build the tenth release of the OrthoMaM
database, we had to build more than 20,000 alignments containing
up to 116 sequences that could be several Kb long. We designed a
pipeline based on MACSE v2 that is well suited for this task. The
filtering steps are similar to those of the MACSE_ALFIX pipeline,
but the main alignment step here is done by chaining the alignSe-
quences subprogram with MAFFT. The key is to use alignSe-
quences with options that enable MACSE to quite rapidly
generate a draft alignment of the coding nucleotide sequences in
which potential frameshifts are identified. The resulting amino
acids sequences are then aligned using MAFFT, which is much
faster than MACSE for aligning fixed amino acid sequences. The
drawback of this approach is that some frameshifts may not be as
accurately positioned within sequences as they would be with the
MACSE_ALFIX pipeline, which may lead HMMCleaner to remove
some extra residues. For large datasets of sequences expected to
contain few frameshifts, as was the case with the OrthoMaM CDS
database, this strategy seems to work remarkably well. The OMM_-
MACSE pipeline (see Fig. 6) has the same mandatory options as the
MACSE_ALFIX pipeline:

singularity run ./OMM_MACSE_v10.01.sif
--in_seq_file LOC_48720.fasta
--out_dir RES LOC_4872
--out_file_prefix LOC_48720
= The most simple use case of the OMM_MACSE pipeline for larger

datasets.

Note that, if a dataset contains some pseudogenes or contigs
assembled de novo, it may be worth using the refineAlignment
subprogram of MACSE to polish the alignment obtained by
MAFFT and adjust frameshift positions before applying
HMMCleaner.
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Fig. 6 Schematic representation of the OMM_MACSE pipeline. Boxes represent input/output sequence data
(blue when unaligned and green when aligned) and are accompanied, on the left, by a small illustrative
diagram. On the arrows it is mentioned which subprogram/tool is used and whether this step is optional or not
(on/off button). On the right side, additional output files generated are represented in order to provide users
with a full traceability picture. The central part of the pipeline, with a colored background, corresponds to the
alignment and filtering of the homologous sequences. This part is the only one that differs from the
MACSE_ALFIX pipeline (see Fig. 5) and is better suited for large datasets
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If you have a very large number of sequences, trying to align them
simultaneously is dubious for several technical reasons [16]. It is
preferable, as advised by R. Edgar, in the MUSCLE 3.8 [18] user
guide  (http://www.drive5.com/muscle /muscle_userguide3.8.
html), to tackle this problem by leveraging clustering and align-
ment methods. One possibility is to first build clusters of reasonable
size that pool similar sequences (e.g., using UCLUST [19]) in
order to align them separately. In a second step, these alignments
can be combined to produce the final super-alignment. When there
are only two clusters/alignments (e.g., alignl.fasta and align2.
fasta), they can be aligned with the alignTwoProfiles subprogram
of MACSE to produce a single alignment containing all the
sequences. This subprogram has many options (mostly the same
as alignSequences), but only the options allowing users to specify
the two input alignment files (options -pl and -p2) are mandatory:

Java -jar macse jar -prog alignTwoProfiles
-pl alignl fasta
-p2 align2. fasta

= Aligns two previously computed alignments.

When dealing with a handful of clusters, several alignTwoPro-
files invocations may be chained to build the global alignment. The
idea here is to take the output of one alignTwoProfiles invocation as
the p1 profile for the next one. For instance, four alignments can be
combined using a MACSE command file as follows:

Java ~jar macsejar -prog multi Programs
-MACSE_command,_file align_multi.macse
where align_multi.macse is a text file containing this four lines:

-prog alignTwoProfiles -p1 alil .fasta -p2 ali2.fasta -out_NT alil2.
fasta

-prog alignTwoProfiles -pl alil2.fasta -p2 ali3.fasta -out_ NT
alil23.fasta

-prog alignTwoProfiles -pl alil23.fasta -p2 ali4.fasta -out_ NT
aliAll fasta

= Basic strategy to align four previously computed alignments.

Using this basic strategy, the final alignment will depend on the
order in which the profiles are sequentially added. Under the same
rationale as for usual multiple sequence alignment, it would be
better to first align the most similar alignments. More elaborate
strategies can be designed using MACSE, but this is beyond the
scope of this chapter.
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3.6 Metabarcoding
Applications

Metabarcoding analysis often requires handling thousands of
sequences. Such datasets are not directly tractable with the alignSe-
quence subprogram of MACSE, but they can be handled by
sequentially adding the newly obtained sequences to a reference
alignment containing sequences of related taxa for the targeted
barcoding locus (e.g., COX1, matK, rbcL, etc.). We successfully
used this approach in the Moorea BIOCODE project on coral reef
biodiversity [6].

The initial alignment can be either built from scratch or from
an improved version of an existing alignment (using the refineA-
lignment subprogram of MACSE to unravel some potential
sequencing errors/frameshifts). The reference alignment does not
need to be huge. For instance, rather than using all available COX1
sequences available in the BOLD database [20], for a given taxo-
nomic group, it may be better to collect some carefully checked
sequences that reflect the molecular diversity of the taxonomic
groups of interest. Those carefully selected sequences may be
aligned using one of the previously detailed strategies (e.g., using
the MACSE_ALFIX pipeline). Then, using the enrichAlignment
subprogram, problematic reads can be detected while adding the
remaining reads to the reference alignment. By default, enrichA-
lignment adds sequences to an alignment (referred to as the initial
alignment) in sequential mode: each sequence is aligned with the
current alignment, i.e., that contains the sequences of the initial
alignment plus those previously added. Some enrichAlignment
options allow users to set thresholds/conditions for a sequence to
be discarded and/or to specity that all new sequences must be
aligned with the unmodified initial alignment.

The following command line may be used to sequentially
enrich an alignment by adding only reads that do not induce too
many frameshifts (-maxFS_inSeq), stop codons
(-maxSTOP_inSeq) and insertion (maxINS_inSeq) events:

Java -jar macse.jar -prog envich Alignment
-align Moorea_BIOCODE_small_ref fasta
-seq Moorea_BIOCODE_small_ref.fasta
-seq_lr noctural_diet_sample.fasta
gc_def 5
-fs Ir 10
-stop_Ir 10
-maxES_inSeq 0
-maxINS_inSeq 0
-maxSTOP_inSeq 1

= Enrich an initial alignment by conditionally adding sequences
to it.
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Alternatively, for large datasets, it could be better to work with
a fixed alignment (option -fixed_alignment_ON). Working with a
fixed alignment is especially convenient when dealing with (meta)-
barcoding data since such analyses usually require handling numer-
ous highly similar sequences that are not expected to contain indels.
When using this option, all sequences to be added are compared
with the same initial alignment. The key advantage is that this
allows task parallelization. For example, if there are 50,000 reads/
sequences to be added to the initial alignment, this large dataset
may be split into 50 sets of 1000 sequences each, and then the tasks
may be run in parallel on 50 computers/CPUs. Moreover, if each
of the 50,000 sequences can be correctly aligned with the original
alignment without inserting gap events in this original alignment,
then the aligned version of the 50,000 sequences (that were inde-
pendently computed) can be merged to the initial alignment to get
a valid global alignment.

The enrichAlignment MACSE subprogram not only produces
the two usual FASTA output files, respectively, containing the
nucleotide and amino acid alignments, but also a tabular text file
providing detailed information for each read, including whether it
has been added or not and how many stop codons, frameshifts, and
insertion events are required to align this read with the reference
alignment. This helps to understand why some reads were dis-
carded, to spot reads that have been added but contain few unex-
pected events (e.g., one internal frameshift) and to compute some
overall statistics regarding the input read quality.

4 Conclusion

This chapter describes typical MACSE use cases along with asso-
ciated command lines and provides two examples of pipelines built
from the different MACSE subprograms. In its latest version,
MACSE is suitable for bioinformaticians who need to create their
own pipelines and for finely controlling the parametering of each
subprogram, but it is also accessible to nonspecialists via its graphi-
cal interface.
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